Viktor Artiushenko

Drittmittelbeschäftigte/-r

M. Sc. Viktor Artiushenko

Institut für Engineering von Produkten und Systemen
Juniorprofessur für KI-Anwendung in Produktion und Logistik
Universitätsplatz 2, 39326 Magdeburg, G10-247
Projekte

Aktuelle Projekte

AI Engineering - Ein interdisziplinärer, projektorientierter Studiengang mit Ausbildungsschwerpunkt auf Künstlicher Intelligenz und Ingenieurwissenschaften - Teilprojekt FMB
Laufzeit: 01.12.2021 bis 30.11.2025

AI Engineering (AiEng) umfasst die systematische Konzeption, Entwicklung, Integration und den Betrieb von auf Künstlicher Intelligenz (KI) basierenden Lösungen nach Vorbild ingenieurwissenschaftlicher Methoden. Gleichzeitig schlägt AiEng eine Brücke zwischen der Grundlagenforschung zu KI-Methoden und den Ingenieurwissenschaften und macht dort den Einsatz von KI systematisch zugänglich und verfügbar. Das Projektvorhaben konzentriert sich auf die landesweite Entwicklung eines Bachelorstudiengangs «AI Engineering», welcher die Ausbildung von Methoden, Modellen und Technologien der KI mit denen der Ingenieurwissenschaften vereint. AiEng soll als Kooperationsstudiengang der Otto-von-Guericke-Universität (OVGU) Magdeburg mit den vier sachsen-anhaltischen Hochschulen HS Anhalt, HS Harz, HS Magdeburg-Stendal und HS Merseburg gestaltet werden. Der fächerübergreifende Studiengang wird Studierende befähigen, KI-Systeme und -Services im industriellen Umfeld und darüber hinaus zu entwickeln und den damit einhergehenden Engineering-Prozess - von der Problemanalyse bis zur Inbetriebnahme und Wartung / Instandhaltung - ganzheitlich zu begleiten. Das AiEng-Curriculum vermittelt eine umfassende KI-Ausbildung, ergänzt durch eine grundlegende Ingenieurausbildung und eine vertiefende Ausbildung in einer gewählten Anwendungsdomäne. Um eine Symbiose von KI- und ingenieurwissenschaftlicher Lehre zu erreichen, wird ein neuer handlungsorientierter Rahmen entwickelt und gelehrt, welcher den vollständigen Engineering-Prozess von KI-Lösungen beschreibt und alle Phasen methodisch unterstützt. AIEng zeichnet sich durch eine modulübergreifende Verzahnung von Lehr- und Lerninhalten innerhalb eines Semesters sowie durch ein fakultäts- und hochschulübergreifendes Tandem-Lehrkonzept aus und verfolgt ein studierendenzentriertes Didaktikkonzept, welches durch viele praxisorientierte (Team-)Projekte und ein großes Angebot an Open Educational Resources (OERs) mit (E)-Tutorenprogramm getragen wird.

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

SENECA - Entwicklung eines selbstlernenden Entscheidungsunterstzützungssystem für die echtzeitfähige Auftragsreihenfolge und Maschinenbelegungsplanung
Laufzeit: 01.04.2020 bis 31.03.2022

Das Forschungsprojekt SENECA verfolgt die Entwicklung eines selbstlernenden Entscheidungsunterstützungssystems für die echtzeitfähige Auftragsreihenfolge- und Maschinenbelegungsplanung. Die Forschungsfrage lautet, wie Methoden des maschinellen Lernens (ML) angewendet werden müssen, um in Echtzeit zulässige Lösungen mit ausreichender Güte für Auftragsreihenfolge- und Maschinenbelegungsprobleme zu berechnen. Es sollen verschiedene ML-Methoden hinsichtlich ihrer Anwendbarkeit für die Auftragsreihenfolge- und Maschinenbelegungsplanung untersucht werden. Aufgrund der hohen Dynamik moderner Produktionssysteme und der daraus resultierenden Planungsunsicherheit wird erwartet, dass insbesondere die Produktionsablaufplanung von ML-basierten, echtzeitfähigen und adaptiven Entscheidungsunterstützungssystemen profitiert. ML-Algorithmen werden zurzeit vornehmlich für Regressions- und Klassifikationsprobleme eingesetzt. Ihr unmittelbarer Einsatz zur Berechnung von Optimierungsproblemen ist bisher kaum beforscht und industrielle Anwendungen sind bisher nicht bekannt. Das technische Arbeitsziel ist die Entwicklung eines Soft- und Hardware-Prototypen, welcher Entscheider in der Produktionsplanung und -steuerung unterstützt. Die technischen Herausforderungen betreffen insbesondere Aspekte der produktions- und einsatzspezifischen Gestaltung. Zum einen ist eine hohe Benutzerfreundlichkeit wichtig. Dies impliziert unter anderem, dass der Mensch stets die letzte Entscheidungsinstanz darstellt. Das System soll fähig sein, sich mit menschlicher Expertise kontinuierlich selbst zu verbessern. Zum anderen muss das Assistenzsystem derart gestaltet sein, dass die Echtzeitfähigkeit der Lösungsverfahren ausgeschöpft wird. Vorgeschlagene Auftragsreihenfolgen und Maschinenbelegungen müssen kurzfristig von der Produktionsplanung in die Produktionssteuerung überführt werden können.

Projekt im Forschungsportal ansehen

Publikationen

2024

Begutachteter Zeitschriftenartikel

Resource-efficient Edge AI solution for predictive maintenance

Artiushenko, Viktor; Lang, Sebastian; Lerez, Christoph; Reggelin, Tobias; Hackert-Oschätzchen, Matthias

In: Procedia computer science - Amsterdam [u.a.] : Elsevier, Bd. 232 (2024), S. 348-357

2023

Buchbeitrag

AI Engineering als interdisziplinäres Einführungsmodul zwischen Künstlicher Intelligenz und Ingenieurwesen

Lang, Sebastian; Siegert, Ingo; Artiushenko, Viktor; Schleiss, Johannes

In: Informatik 2023 - Berlin : Gesellschaft für Informatik e.V. ; Klein, Maike, S. 381-384 - (GI-Edition. Proceedings; volume P-337) [Tagung: Informatik 2023, Berlin, 26. - 29. September 2023]

Ereignisdiskrete Modellierung autonomer Transportfahrzeuge mittels Open-Source Software - Discrete-event modelling of autonomous transport vehicles using open-source software

Artiushenko, Viktor; Müller, Marcel; Reggelin, Tobias; Lang, Sebastian

In: Simulation in Produktion und Logistik 2023 / ASIM-Fachtagung Simulation in Produktion und Logistik , 2023 - Ilmenau : Universitätsverlag Ilmenau ; Bergmann, Sören *1979-*, S. 271-280 [Tagung: 20. ASIM Fachtagung Simulation in Produktion und Logistik, Ilmenau, 13-15. September 2023]

Letzte Änderung: 14.11.2024 - Ansprechpartner: Webmaster